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Abstract—Large Language Models (LLMs) and their agentic
frameworks are increasingly adopted to automate software devel-
opment tasks such as issue resolution and program repair. While
prior work has identified security risks in LLM-generated code,
most evaluations have focused on synthetic or isolated settings,
leaving open questions about the security of these systems in
real-world development contexts. In this study, we present the
first large-scale security analysis of LLM-generated patches using
20,000+ issues from the SWE-bench dataset. We evaluate patches
produced by a standalone LLM (Llama 3.3) and compare them
to developer-written patches. We also assess the security of
patches generated by three top-performing agentic frameworks
(OpenHands, AutoCodeRover, HoneyComb) on a subset of our
data. Finally, we analyze a wide range of code, issue, and project-
level factors to understand the conditions under which LLMs and
agents are most likely to generate insecure code.

Our findings reveal that the standalone LLM introduces nearly
9× more new vulnerabilities than developers, with many of these
exhibiting unique patterns not found in developers’ code. Agentic
workflows also generate a significant number of vulnerabilities,
particularly when granting LLMs more autonomy, potentially
increasing the likelihood of misinterpreting project context or
task requirements. We find that vulnerabilities are more likely
to occur in LLM patches associated with a higher number of files,
more lines of generated code, and GitHub issues that lack specific
code snippets or information about the expected code behavior
and steps to reproduce. These results suggest that contextual
factors play a critical role in the security of the generated
code and point toward the need for proactive risk assessment
methods that account for both code and issue-level information
to complement existing vulnerability detection tools.

Index Terms—LLMs, Agentic Frameworks, Security, Issue
Resolution

I. INTRODUCTION

LLMs are rapidly transforming software development, as-
sisting with tasks like code completion, test generation, and
bug fixing [1]–[5]. They are also increasingly integrated into
agentic frameworks that enable autonomous planning and exe-
cution of complex tasks, such as issue resolution, where LLM-
based agents identify, diagnose, and patch software bugs di-
rectly in real-world projects [6]–[8]. This widespread adoption
of LLMs raises critical concerns about their potential security
implications [9]–[12]. Studies show that 30-50% of code gen-
erated with AI code assistants contains vulnerabilities [13]–
[15]. As LLMs are increasingly entrusted with making direct
commits to production repositories, the risk of introducing
vulnerabilities grows. Even a single vulnerable commit, as
seen in the Log4Shell exploit, can have far-reaching and costly
consequences [16]. Thus, there is an urgent need to understand
and mitigate the security risks posed by LLM-based systems.

While several studies have shown that LLMs are prone
to generating insecure or low-quality code, most focus on
simplified tasks such as coding exercises or identifying vul-
nerabilities in isolated code snippets [13], [17]–[19]. These
scenarios lack the complexity and context of issue resolution
in real projects, where understanding environment constraints
or project-specific dependencies is critical. Additionally, when
LLMs are embedded in agentic frameworks that automate
repair pipelines, these risks may be amplified [20]–[22]. As a
result, it remains unclear how secure LLM-generated patches
are when fixing real-world issues. Although recent benchmarks
like SWE-bench [23] have enabled the assessment of LLMs
on real-world software engineering tasks, security-specific
analyses in these contexts remain limited. Such evaluations
are essential for understanding the circumstances under which
vulnerabilities emerge in LLM-generated bug fixes.

In this work, we conduct an empirical study of LLM and
agent-generated code in real-world issue resolution tasks, with
a focus on security. Using the SWE-bench dataset, we analyze
patches generated both by a standalone LLM and three agentic
frameworks, comparing them to developer-written patches.
Our goal is not only to assess whether LLMs and agentic
frameworks introduce security vulnerabilities in realistic set-
tings, but also to understand the conditions under which this
occurs. We aim to identify the characteristics of risky LLM
and agent-generated contributions and contexts that lead to
insecure outputs. We ask the following research questions:

• RQ1: How secure are the patches produced by standalone
LLMs on real-world issue resolution tasks? How does
their security compare to developer-written patches?

• RQ2: To what extent do agentic APR workflows generate
secure patches in real-world settings?

• RQ3: What code, issue, or project characteristics are as-
sociated with the generation of vulnerable code by LLMs
or agentic APR frameworks when resolving issues?

To answer these questions, we evaluate the vulnerabil-
ity prevalence, type, and overlaps in: 1) Developer-written
patches, 2) Standalone LLM patches (Llama 3.3 70B [24]),
and 3) Agentic APR Framework patches (OpenHands [6],
AutoCodeRover [8], and Honeycomb [25]). Using a majority
voting technique to suppress false positives across three static
analysis tools (Semgrep [26], Bandit [27], and CodeQL [28]),
we identify the new vulnerabilities introduced through the
patches. Lastly, we examine a comprehensive set of of code,
issue, and project-level metrics to assess the conditions under
which LLMs are most likely to introduce vulnerabilities.



Our findings highlight the security risks of LLM-generated
code at scale. When evaluated on 20,000+ GitHub issues,
the standalone LLM introduced 185 new vulnerabilities i.e.,
nearly 9x higher than the 20 new vulnerabilities introduced by
developers. On a smaller test set of 2,200+ issues, the agentic
frameworks also produced vulnerabilities, with the highest
counts observed in the framework that gave the LLM greatest
autonomy. Notably, some of the most recurring vulnerabili-
ties introduced by LLMs (CWE-95, CWE-327) were almost
entirely distinct from those written by developers (e.g., CWE-
732, CWE-377), suggesting that LLMs are not only replicating
developers’ errors but also exhibiting new behavioral patterns.
We found that vulnerable outputs are more likely when LLM
patches involve a higher number of files and generated lines
of code. Further, most LLM-generated vulnerabilities were
observed in instances involving bug-related issues that do
not contain code examples, information about the expected
behavior of the code, or steps to reproduce the issue. These
findings suggest that the risk of generating vulnerabilities is
not only a function of the code produced but also of the context
in which the LLM operates. As such, our insights can help
inform proactive risk assessments of LLM and agent contribu-
tions, complementing the existing vulnerability detection tools,
by highlighting high-risk contexts even before the code is
reviewed. We make our replication package publicly available
to support further research and validation of our findings [29].

II. METHODOLOGY

Figure 1 shows an overview of our methodology. Us-
ing GitHub issues from SWE-bench, we collect developer
patches and candidate patches generated by a standalone
LLM (Llama 3.3) and three agentic frameworks (OpenHands,
AutoCodeRover, HoneyComb). We analyze the prevalence and
patterns of vulnerabilities for each of these code generation
sources (RQ1, RQ2). In addition, we identify code, issue, and
project-level factors that associated with the presence of these
vulnerabilities (RQ3).

A. Dataset and Task Setup

We leverage the SWE-bench dataset [23], which consists of
real-world GitHub issues paired with pull requests that resolve
them. SWE-bench includes a train set of approximately 19,000
issue–PR pairs collected from 37 popular Python repositories
and a test set of 2,294 issue–PR pairs from 12 repositories.

For this study, we analyze two types of generated patches:
those produced by a standalone LLM (Llama) and those
generated by three top-performing agentic LLM frameworks
(OpenHands, AutoCodeRover, HoneyComb).For the stan-
dalone model, we use Llama 3.3 Instruct (70B) to generate
patches for both the train and test sets of SWE-bench, com-
prising approximately 21,000 instances in total. Since Llama is
open-source and possible to run at scale, this generation step,
although computationally heavy, is feasible. In contrast, for
the agentic frameworks, we rely on publicly released patches
that are available only for the test set. Due to the substantial
computational and financial cost required to run these iterative

frameworks across the train set, we restrict our framework-
based analysis to the test split.

Including both standalone LLM and agentic framework
settings ensures the correct scope for addressing our research
questions (RQ1–RQ2). These two settings also reflect distinct
real-world usage scenarios. Standalone LLMs can better repre-
sent how developers interact with models, prompting them to
get help with issue resolution and manually integrating the
generated code. This makes the RQ1 analysis relevant for
understanding the security implications of everyday developer
usage. Agentic frameworks, in contrast, embody more au-
tonomous approaches to issue resolution and reflect a growing
trend toward automated, end-to-end program repair. Evaluating
both settings enables a broader understanding of the security
risks posed by current and emerging LLM-based workflows.

B. Patch Generation with LLM and Agentic Frameworks

1) RQ1. Llama 3.3 Instruct (70B): To examine the security
risks of patches produced by standalone LLMs, we generate
candidate patches across the entire dataset (train+test) using
the Llama 3.3 Instruct 70B model [24]. Recent benchmarks
indicate that this model’s code generation capabilities are com-
parable to those of GPT-4o [30] and exceed the performance
of Claude 3 Opus [31] and GPT-4 Turbo [32], making it a
strong choice for our study [33], [34].

Bug Localization: We use the oracle retrieval method, i.e.,
supplying the model with the corresponding issue description
and the exact project files modified in the developer’s ground-
truth fix. This ensures that the model receives the most relevant
parts of the codebase that are needed to address the issue. We
intentionally adopt the oracle retrieval method since it allows
us to isolate and evaluate the security of the code generated by
the LLM itself, without conflating generation quality with the
efficacy of retrieval methods. Additionally, the default SWE-
bench retrieval baseline, BM25, fails to retrieve any relevant
files for approximately 40% of test instances [23]. The focus
of our study is on assessing the security of generated code
when an LLM is provided with the correct context.

LLM Prompts: We adopt the prompt structure used in SWE-
Bench, with slight modifications. Rather than generating diffs
like SWE-bench, we explicitly instruct the model to produce
complete files. While diff generation is popular for its lower
token overhead and ease of use with patching tools [35], in
standalone LLM settings, it often yields syntactically invalid
or partially applicable patches, even after post-processing [23].
Our preliminary experiments confirmed this limitation. In
contrast, producing full files ensures self-contained outputs
without relying on diff syntax. It also reflects realistic us-
age, where developers expect standalone models to produce
runnable code, not diffs. For this study, we prioritize reliability
over minimal token usage.

2) RQ2. Agentic LLM Frameworks: To investigate whether
agentic workflows introduce security risks in LLM-generated
patches, we analyze solutions from three of the top-
performing frameworks on the SWE-bench leaderboard: Open-
Hands+CodeAct v2.1 (Claude-3.5-Sonnet-20241022) [6],



Fig. 1. Overview of Our Methodology for LLM-Based Code Generation and Security Evaluation.

AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022) [8], and
Honeycomb [25]. These models resolved 29.38%, 24.89%, and
22.06% of the SWE-bench test set issues, respectively. We
selected them based on their resolution rates at the time of
our study and the availability of their generated patches on
the SWE-bench official repositories [36]. Hereafter, we refer
to these models as OH, ACR, and HC.

To enable a uniform comparison across models, we modified
and extended the official SWE-bench evaluation harness. This
harness typically applies a candidate patch to a Dockerized
snapshot of the original repository state and runs corre-
sponding test cases to assess functional correctness. For our
purposes, we modified this process to capture the full impact
of each patch on the project’s files. Specifically, for every
file modified by a patch, we extract and save two versions:
one pre-patch snapshot and one post-patch snapshot. We also
track any newly added or renamed files, along with their full
file paths, to ensure consistent mapping in future steps. This
process yields two datasets per framework: one consisting of
pre-patch files and another consisting of post-patch files. These
datasets capture the complete file-level changes made by the
framework while applying the patches.

C. Developer-written Patch Collection

To create a security baseline for comparison with LLM-
generated code, we collect the original developer-written so-
lutions for each issue from the corresponding PR using the
GitHub API [37]. For each instance, we retrieve the final
version of the files modified or created by the developer as
part of the PR and merged into the codebase.

D. Vulnerability Detection Using Majority Voting

Manually analyzing the security of 20,000+ patches is
infeasible. Therefore, we rely on three established OWASP-
recommended [38] static analysis tools to automate the vul-
nerability detection process. The following tools were selected
based on their widespread use [12], [18], [39], support for
both rule-based and taint analysis, and their capacity to detect
a wide range of real-world vulnerabilities [40]:

CodeQL [28] is a static analysis tool developed by GitHub
that is often used to identify security issues and code quality
problems through heuristic and taint analysis techniques.

Semgrep [26] is a static analysis tool that uses pattern-
based rules and taint analysis to detect a wide range of
vulnerabilities, e.g., injection risks and insecure API usage.

Bandit [27] is a heuristic-based and security-focused static
analysis tool designed for Python projects. Bandit inspects
abstract syntax trees to detect common security issues.

A common concern with static analysis tools is their limited
accuracy, particularly their tendency to produce false positives
[41]–[43]. Therefore, to improve reliability and mitigate tool-
specific false positives, we adopt a majority voting strategy:
a vulnerability is accepted if at least two of the three tools
detect it in the same file. Prior work has shown that static
analysis tools often report distinct sets of vulnerabilities with
limited overlap, and some studies have explored combining
results via union or hybrid strategies to improve coverage [44],
[45]. In contrast, our approach prioritizes precision over recall;
by requiring agreement among tools, we aim to reduce false
positives and improve the confidence in our findings. While
this majority-vote strategy may miss some true positives, it
offers a more conservative and reliable performance.

We focus on identifying only the new vulnerabilities in-
troduced by LLM-generated code. By comparing original and
modified files, we distinguish vulnerabilities introduced by the
LLM from those already present. This allows us to isolate the
security risks attributable to LLM-generated patches.

We apply the same static analysis tools and majority vote
aggregation process to detect vulnerabilities across all sources,
LLMs, agentic frameworks, and developer-written patches.

E. Metrics for Empirical Analysis

We analyze the prevalence and properties of vulnerabilities
(RQ1 & RQ2) using CWE categories. We collect various code,
issue, and project-level metrics to investigate the factors that
are associated with the generation of vulnerabilities (RQ3).

1) RQ1 & RQ2: Vulnerability Prevalence and Properties:
We analyze the prevalence and types of vulnerabilities (iden-
tified via majority voting) in code generated by Llama 3.3
Instruct (70B) and agentic frameworks (OH, ACR, HC), and
compare them to vulnerabilities in developer-written patches
from GitHub. Specifically, we examine:

Vulnerability prevalence: We measure the number of
GitHub issues containing at least one new vulnerability.

Vulnerability types and overlaps: We measure the dis-
tribution of vulnerability types, based on CWE categories.
Further, we investigate the similarities and differences between
the vulnerability patterns in LLM and developer-written code.

2) RQ3: Code, Issue, Project Characteristics Associated
with LLM or agent-generated Vulnerabilities: We investigate



whether the context in which the model is tasked with resolv-
ing an issue influences the security of the generated code. We
analyze a range of metrics that have been shown in prior work
to correlate with the riskiness of code contributions [46]–[49],
as well as introduce new metrics. Overall, these factors reflect
different dimensions of task complexity and clarity. For in-
stance, we hypothesize that issues that clearly and extensively
describe the problem can be easier for LLMs to address, while
tasks involving large or complex code changes may introduce
more room for errors. In addition, characteristics of the project,
such as size, complexity, and developer activity, may affect
the likelihood of producing vulnerable code [50]. We perform
this analysis for all vulnerabilities introduced both by Llama
and the agentic workflows, allowing us to identify shared and
distinct risk factors across different generation techniques.

We group these factors into three categories: code-related,
issue-related, and project-level characteristics:

Code-related Characteristics: We analyze various proper-
ties of the LLM-generated code, including:
# Files added or modified: A larger numbers of files can in-
dicate broader changes and a higher overall risk [46]–[49].
# Unique file types modified: Modifying diverse file types
may introduce different complexities to the issue resolution
process [46], [49].
# Sensitive file modifications: Inspired by prior work on
anomaly detecting malicious commits [49], we define a list
of sensitive file types (e.g., .conf, .yml, .json) whose
modification can increase the risk of vulnerabilities.
LOC Generated by LLM: This measures how many lines were
added or rewritten by the LLM. Generating more lines of code
may suggest that the model is undertaking more complex tasks,
handling broader context, or replacing larger code chunks,
which can raise the likelihood of mistakes or security issues.
Cyclomatic Complexity of LLM-Generated Code: This metric
reflects the complexity of the functions introduced or rewritten
by the LLM. Prior studies also analyzed the cyclomatic com-
plexity of LLM-generated code [14], [51]. Higher complexity
in generated code suggests that the model is constructing more
control flows, which can be more error-prone and harder to
verify for correctness and security.

Issue-related Characteristics: We extract several features
from the GitHub issue associated with each instance:
Issue Type and Bug Type Classification: We manually label
whether the issue is a bug, a feature request, or a question,
following established comprehensive taxonomies [52], [53].
Further, for issues categorized as bugs, we classify the bug type
using a comprehensive, empirically grounded, and widely-
adopted taxonomy [54]. The bug categories are: Configuration
issues, Network issues, Database-related issues, GUI-related
issues, Performance issues, Permission/deprecation issues,
Security issues, Program anomaly issues, Test code-related
issues, and Miscellaneous/other issues.
Information Completeness: Based on prior work emphasizing
the importance of issue clarity [53], we manually annotate
whether each issue includes: (1) Expected Behavior: how the
software is supposed to behave, (2) Observed Behavior: how

it actually behaves, and (3) Steps to Reproduce: the process
needed to trigger the issue. The presence of this information
can aid in understanding the bug’s context and identifying the
root cause of the problem.
# Words: We measure the total word count of the issue
description and all the comments made on the issue prior to
the date of first commit in the corresponding PR.
# Comments Prior to First PR: We measure the number of
comments on the issue thread made before the first pull request
was submitted to address the problem. A higher comment
count may indicate increased back-and-forth discussion, po-
tentially reflecting communication challenges or ambiguities
that required clarification through developer interactions.
Presence of Code Snippets: Using regular expressions, we
identify code snippets in issues and use it as an indicator of
technical detail and potential guidance for bug resolution.

Manual annotation of issue type, bug type, and information
completeness was performed independently by two annotators,
each with at least three years of programming experience. For
each data point, they examine both textual and code-related
data, including the GitHub issue title, description, discussion
thread, etc. The annotators followed a shared set of annotation
instructions (included in our replication package). They fol-
lowed an iterative analysis comprising multiple sessions. Inter-
rater agreement was initially measured using Cohen’s kappa
for each category (all values > 0.61). The annotation process
proceeded through several rounds of labeling and discussion,
during which disagreements were resolved. This resulted in a
final strong agreement level (Cohen’s kappa values > 0.9).

Project-related Characteristics: Finally, we assess project
characteristics associated with the vulnerable LLM patches:
# Contributors: Using the GitHub API, we measure the num-
ber of developers contributing to a project. Specifically, we
count all users listed as GitHub contributors, i.e., users who
have made at least one commit to the repository’s default
branch. This metric reflects the breadth of developer involve-
ment in a project, which can influence code quality and review
process. Projects with more contributors often have greater
oversight, which can lower the risk of security vulnerabilities.
# Files: The number of files in a given project can serve as
a proxy for its potential complexity and size. Prior work on
open-source software effort estimation has used file count as
an indicator of project scale and structural complexity [55].
Further, size of a project has been shown to have direct
associations with the number of potential vulnerabilities [50].
Cyclomatic Complexity and Maintainability Index of Project:
We use Radon [56], a popular code analysis tool [57], [58],
to compute each project’s average maintainability index and
cyclomatic complexity. Cyclomatic complexity is computed
as the average of complexity scores across all functions in
the codebase. Higher values indicate more intricate control
logic throughout the project, potentially making it harder for
LLMs to reason about and modify the code securely.

Maintainability index is derived from several factors, in-
cluding cyclomatic complexity, lines of code, and Halstead
volume, and is designed to estimate how easy it is to maintain



the codebase. A higher maintainability index suggests code
that is easier to understand and modify, which may reduce the
risk of generating vulnerabilities.

We measure the code, issue, and project-level metrics on
the entire SWE-bench dataset. For Llama-generated vulnera-
bilities, we report the metrics calculated on the data associated
with all 21,294 issues in the dataset. For agent-generated
vulnerabilities, these metrics are calculated only on the corre-
sponding data associated with the test set of 2,294 issues.

III. RESULTS

A. RQ1: Security of patches generated by developers vs.
standalone LLM

Vulnerability Prevalence: Table I presents the number
of files with new vulnerabilities introduced by Developer
and Llama 3.3 patches. The raw counts vary significantly
across tools and code sources. For the full SWE-bench dataset
(train+test), Llama 3.3 generated 1440 vulnerabilities, of
which 185 (20.1%) passed the majority vote filter. In contrast,
developer patches for the full dataset, triggered 1398 alerts
(primarily driven by Bandit’s high sensitivity) but only 20
vulnerabilities (2%), identified in 17 files, were retained after
majority vote filtering.
Source Semgrep CodeQL Bandit Majority Vote

Llama 3.3 (Train+Test) 323 62 1055 185
Developers (Train+Test) 9 41 1348 17

OH (Test) 447 64 1383 195
ACR (Test) 5 3 12 3
HC (Test) 19 3 37 2

TABLE I
NUMBER OF VULNERABILITIES DETECTED PER TOOL. MAJORITY VOTE

PRESENTS THE NUMBER OF FILES WITH AT LEAST ONE VULNERABILITY.

When comparing individual tools, Bandit reported the
highest number of vulnerabilities overall: 1383 in LLaMa-
generated code and 1055 in developer code. Semgrep detected
323 vulnerabilities in LLM outputs but just 9 in developer
code. CodeQL, the most conservative tool, identified 62 vul-
nerabilities in LLM-generated code and 41 in developer code.
Overall, our results suggest that Bandit produces most false
positives, consistent with prior work [59].

It is worth noting that all reported numbers are the new
vulnerabilities that were injected only after the LLM/Devel-
opers modified the files or added the code to the repository.
These vulnerabilities did not exist in the code before the patch
generation. For instance, in an issue from the Qiskit project,
Llama introduced a CWE-95 vulnerability by using eval()
to interpret user-provided input strings as Python code. These
strings are strictly sanitized in developers’ code. The LLM-
generated code, however, converted the string into a Python
lambda function without proper sanitization or sandboxing.
This enabled the possibility of a code injection attack, since
malicious input could be executed directly.

Vulnerability Types and Overlaps: As shown in Table II,
the most common vulnerabilities in Llama-generated patches
include command injection (CWE-78, 97 instances), eval
injection (CWE-95, 54), insecure deserialization (CWE-502,

21), path traversal (CWE-22, 19), and weak cryptography
(CWE-327, 12). While less frequent, other vulnerability types
like incorrect permission assignment or error message ex-
posure also appeared in the LLM patches. The full set of
vulnerabilities are included in our replication package.

Llama-Generated Code

CWE-78 (OS Command Injection) 97
CWE-95 (Eval Injection) 54
CWE-502 (Insecure Deserialization) 21
CWE-22 (Path Traversal) 19
CWE-327 (Weak Crypto) 12

Developer-Written Code

CWE-78 (OS Command Injection) 4
CWE-732 (Permission Misconfiguration) 4
CWE-502 (Insecure Deserialization) 3
CWE-22 (Path Traversal) 3
CWE-377 (Insecure Temporary File) 3
CWE-703 (Exception Handling) 3

TABLE II
MOST RECURRING CWE TYPES FOUND IN LLAMA-GENERATED AND

DEVELOPER-WRITTEN PATCHES ACROSS THE TRAIN & TEST SETS.

Developer-written patches showed far fewer vulnerabilities
overall, but some of the top categories i.e., command injection
(CWE-78, 4), deserialization (CWE-502, 3), and path traversal
(CWE-22, 3), are similar to the LLM results. These three
common CWEs (mostly related to improper input handling
and insufficient sanitization when interacting with system
commands or file paths) and their presence in both sets may
stem from the fact that LLMs are trained on human code,
inheriting common patterns, including insecure ones.

Despite the similarities in vulnerability patterns, certain cat-
egories were far more prominent in the Llama-generated code
and entirely absent from developer-written patches. Notably,
eval injection (CWE-95, n=54 instances) and the use of weak
cryptographic algorithms (CWE-327, n=12) ranked among the
most frequent LLM vulnerabilities. These issues likely stem
from the model’s tendency to translate task instructions into
overly literal code, for example, using eval() to dynamically
execute strings, or defaulting to insecure algorithms like MD5.
Unlike developers, who often follow project standards or
rely on secure external frameworks, standalone LLMs may
prefer simpler but less secure implementations. This behavior
reflects the model’s narrow focus on completing the task
at hand with simpler code, often at the expense of secure
best practices. For instance, in an issue requesting improved
password hashing, Llama generated a new custom hasher
that used SHA-256 instead of upgrading the existing Argon2-
based implementation. While SHA-256 is straightforward to
apply, it lacks protective features against brute-force attacks
(CWE-327). Additionally, the LLM produced the following
implementation of the check_password() function, which
includes a vulnerable use of hashlib.md5():

def check_password(raw_password,
encoded_password, setter=None):
...
data = raw_password.encode(’utf-8’)
return hashlib.md5(data).hexdigest() ==

encoded_2[’hash’]



RQ1 Summary: Overall, we observed that the standalone
LLM introduced up to 9× more vulnerabilities into the code-
base than developers when resolving real-world issues. This
highlights a significant risk associated with deploying LLMs
in software development pipelines without careful security
auditing. Moreover, none of the specific vulnerabilities found
in Llama-generated code overlap with those in developer
code (either in terms of affected files or associated issues,)
indicating that LLMs can introduce distinct vulnerabilities.

B. RQ2: Security of patches generated by the agentic APR
workflows

Vulnerability Prevalence: Table I also reports the number
of vulnerabilities for agentic frameworks i.e., OH, ACR, and
HC, when evaluated on the SWE-bench test set. Similar to
RQ1, we apply the majority vote strategy to retain only high-
confidence vulnerabilities.

Among the agentic frameworks evaluated on the SWE-
bench test set, OH produced 195 vulnerabilities (after majority
vote filtering), while ACR and HC each produced 3 and
2 vulnerabilities respectively. As with Llama and developer
patches, Bandit consistently reported the highest number of
vulnerabilities, followed by Semgrep and then CodeQL. This
pattern holds across all three frameworks. However, despite
the high number of raw detections, the majority vote strategy
proved highly selective: for example, OH generated over
1,383 alerts across all tools, yet only 195 vulnerabilities
(approximately 15%) were retained in the final filtered set.
This reinforces the importance of using a stricter intersection
criterion when analyzing code security.

While all frameworks introduced new vulnerabilities, OH
produced a disproportionately larger number. To better under-
stand this disparity, we closely examined the results from OH.
Among other factors, OH is given full autonomy, not only to
inspect and modify project files, but also to execute commands,
run tests, and generate new scripts as part of its process.
This broad operational scope means that it often touches
more files than necessary to resolve an issue. Our analysis
indicates that out of the 195 vulnerabilities initially attributed
to OH, 12 were located in test files and 35 were found in
files intended to reproduce the issue (e.g., reproduce.py,
reproduce_error.py). Since such files are not typically
intended for integration into the final production system or
regular execution, we exclude them from the remainder of our
analysis. Furthermore, we observe that, all the remaining 148
vulnerabilities in OH originated from just 15 issue instances.
In fact, three issues alone, django ticket #27854, sphinx issue
#8870, and pylint issue #4421, accounted for 124 of the 148
remaining vulnerabilities. In the most extreme case, django
ticket #27854, OH generated a diff file that exceeded 500,000
lines in length. This pattern reflects a potential problem in
the framework’s control mechanisms. Rather than solving the
issue with minimal, targeted changes, OH can enter error-
prone iterative loops that result in massive file rewrites or
reimplementation of the existing core software components.
These behaviors likely stem from the limitations of the agentic

process in comprehending the full context of the issue and the
project. As a result, OH may generate excessive or redundant
code that is potentially vulnerable.

In one instance, OH attempted to resolve an issue
in the django project, related to invalid SQL genera-
tion from constraint expressions involving ordering (e.g.,
Lower("name").desc()). The original bug caused form
validation to fail with SQL syntax errors because DESC was
incorrectly placed inside a WHERE clause. The developer patch
resolved this cleanly by removing any ordering operations (like
desc()) before constructing validation expressions:

if isinstance(expr, OrderBy):
expr = expr.expression

expressions.append(Exact(expr, expr.
replace_expressions(...)))

In contrast, the OpenHand’s patch bypassed Django’s ORM
entirely and rewrote the validation logic using raw SQL:

where_clause = " AND ".join(conditions)
sql = f"SELECT 1 FROM {table_name} WHERE {

where_clause} LIMIT 1"
cursor.execute(sql, params)

While this approach can address the original issue, it intro-
duced a new vulnerability, CWE-89 (SQL injection), flagged
by both Bandit and Semgrep. Specifically, although query
parameters were bound securely, the field_name values,
used to construct column identifiers, were directly inserted into
the query string:

conditions.append(f"{qn(field_name)} = %s")

If these expressions contain malicious input (e.g.,
F("name); DROP TABLE users; --")), they could
directly manipulate query. Django’s ORM normally safeguards
against such risks, but manual SQL construction ignores
these protections. This example illustrates how a model, may
introduce security risks by deviating from design principles.

Vulnerability Types and Overlaps: Among the agentic
frameworks, OH, responsible for 148 vulnerabilities, exhibited
a significantly similar vulnerability pattern to that of the stan-
dalone LLM: command injection (CWE-78, n=36), insecure
deserialization (CWE-502, n=29), and eval injection (CWE-95,
n=21) were all among the most common CWEs in OH patches.
This alignment suggests that even when LLMs are embedded
within frameworks, the core security risks and patterns persist.

Interestingly, even the relatively smaller number of vulner-
abilities generated by ACR and HC included categories like
command injection and eval injection. Given that the dataset
used in RQ2 is smaller than in RQ1, the presence of these
CWE types across all three agentic frameworks highlights the
persistent security risks posed by autonomous repair agents.

Moreover, we find that vulnerabilities introduced by the
agentic frameworks are almost entirely different from those
written by the developers. These results echo the same ob-
servations in III-A: While developers, standalone LLMs, and
agentic frameworks all can add vulnerable to the codebase, the



vulnerabilities produced by the LLMs or agentic frameworks
are not simply repeating the developers’ mistakes.

RQ2 Summary: While the agentic frameworks were only
evaluated on a smaller subset of data (test-set), all three still
introduced a number of vulnerabilities. OH, in particular,
produced an order of magnitude more vulnerabilities than ACR
or HC. These results indicate that, despite improvements in
autonomy and reasoning, current agentic workflows remain
vulnerable to security issues, especially when given full con-
trol over the codebase.

C. RQ3: What code, issue, or project characteristics are
associated with the generation of vulnerable code by LLMs
when resolving issues?

1) Code-Level Factors: We analyze the code-level char-
acteristics of the files associated with vulnerability-inducing
LLM patches and compare them to those from all LLM-
modified or generated files. Table III summarizes these com-
parisons for Llama-generated patches (RQ1). We note that the
dataset for RQ1 is significantly larger than RQ2. As a result,
due to the limited number of vulnerable examples in ACR and
HC, we report statistical comparisons only for OH. However,
we include the raw values for all three frameworks in Table IV.

Metric (Llama) Vuln Mean All Mean p-value Cliff’s δ

Files Added or Modified (All) 1.72 1.25 <0.001 0.225
Files Added or Modified (Python) 1.60 1.14 <0.001 0.234
Unique File Types Modified 1.11 1.00 0.0002 0.096
Sensitive Files Modified 0.005 0.007 0.919 -0.001
LOC Generated by LLM (Python) 106.56 81.84 <0.001 0.265
Avg. Cyclomatic Complexity of LLM-Generated Code 2.88 3.03 0.7051 -0.019

TABLE III
SUMMARY STATISTICS COMPARING VULNERABLE VS. ALL

LLAMA/AGENTIC-GENERATED CODE FOR CODE-LEVEL METRICS.

Metric OH ACR HC
V A V A V A

Files Added or Modified (All) 158.40 11.38 1.33 1.07 1.67 1.46
Files Added or Modified (Python) 68.83 4.46 1.33 1.07 1.67 1.40
Unique File Types Modified 2.79 1.41 1.00 0.98 1.00 0.90
Sensitive Files Modified 0.191 0.013 0.00 0.00 0.00 0.004
LOC Generated by LLM (Python) 997.98 1614.53 387.33 1294.69 2406.00 1764.98
Avg. Cyclomatic Complexity
of LLM-Generated Code 2.79 1.41 1.00 0.98 1.00 0.90

TABLE IV
MEAN VALUES FOR VULNERABLE (V) VS. ALL (A) AGENTIC-GENERATED

PATCHES ACROSS CODE-LEVEL METRICS.

# Files Added or Modified: As shown in Table III, Llama-
generated vulnerable patches (Vuln Mean) involve modifica-
tions to a larger number of files compared to the entire LLM-
generated set (All Mean), both in overall (1.72 vs. 1.25) and
within Python files (1.60 vs. 1.14), with statistically significant
differences (p < 0.001, Cliff’s δ = 0.23).

Among the agentic frameworks, OH showed an even more
dramatic pattern: vulnerable instances modified 158.40 files
on average (vs. 11.38), including Python files (68.83 vs. 4.46),
with effect size of δ=0.42 and a p-value<0.001. This reflects
the framework’s tendency to perform excessive rewrites. Addi-
tionally, the differences in ACR (1.33 vs. 1.07) and HC (1.67
vs. 1.46) showed higher means for vulnerable instances.

Figure 2 compares the distribution of changed/added Python
files per instance between vulnerable and all patches, across
different generative sources. We observe that all systems show

Fig. 2. Number of changed files per instance (capped at 10). Vulnerable cases
show greater variability and significantly higher averages than the general set.

a general increase in the number of modified files in vulnerable
instances relative to the rest. OH stands out with a substantial
shift, indicating significantly broader edits. Llama-generated
patches, similar to ACR and HC, also display strong differ-
ences with lower overall file counts. These trends highlight
that vulnerability-prone patches tend to involve more scattered
edits across multiple files.
# Unique File Types Modified: Vulnerable code modifications
by Llama affected a slightly broader range of file types (mean
= 1.11 vs. 1.00). This difference is statistically significant (p
= 0.0002), although the effect size is negligible (Cliff’s δ =
0.096). This suggests that file type diversity alone is a weak
indicator of vulnerability risk but may still inform broader risk
assessments when combined with other features.

Across the frameworks, we observe similar patterns: ACR
(1.00 vs. 0.98) and HC (1.00 vs. 0.90) both show higher mean
values for the vulnerable instances. Further, OH exhibited a
more notable increase (2.79 vs. 1.41), with statistical signif-
icance and meaningful effect size (δ = 0.153, p = 0.0031).
This reinforces earlier findings about OH’s broader file editing
behavior, which may contribute to higher vulnerability risk in
its generated patches.
# Sensitive file modifications: using our predefined a set of
sensitive file types (e.g., .conf, .yml, .json), we com-
pare their modification rates in vulnerable and all instances.
In Llama-generated code vulnerable instances did not show
significant changes in modifying such files (p = 0.919), in-
dicating that LLMs do not disproportionately touch sensitive
configuration files when generating insecure code.

This pattern holds for ACR (0.0 vs. 0.0) and HC (0.0
vs. 0.004). OH, on the other hand, exhibited a statistically
significant increase in sensitive file edits (0.19 vs. 0.01, p <
0.001), suggesting that its more expansive editing behavior
may lead it to touch more sensitive files. However, the effect
size remained negligible (δ = 0.076), and results across frame-
works were mixed. This indicates that while sensitive file edits
are a contributing factor in certain frameworks, they are not a
consistent predictor of vulnerability on their own.
LOC Generated by LLM: This factor represents the scale of
code generation by the LLM. In the Llama-generated patches,
vulnerable instances involve more extensive edits (106.6 vs.
81.8 lines on average), a statistically significant difference (p
< 0.001) with a positive effect size (δ = 0.265). This suggests
that larger code generations are more prone to vulnerabilities.

Among the agentic frameworks, ACR shows the strongest



contrast, with vulnerable outputs averaging fewer lines (387
vs. 1295). OH also shows a reduction in generated LOC for
vulnerable instances (998 vs. 1615), with a small effect size
(δ = -0.148, p = 0.082). In contrast, HC exhibits the opposite
trend, with vulnerable code averaging more lines (2406 vs.
1765). These contrasting patterns suggest that while the scale
of generation is associated with vulnerability likelihood, the
relationship can be highly dependent on the specific frame-
work’s behavior and other contextual factors.
Cyclomatic Complexity of LLM-Generated Code: We assess
whether the vulnerable outputs contain more complex control
flows by measuring the average cyclomatic complexity of
functions in files generated or modified by the LLM. In the
Llama patches, vulnerable instances show slightly lower com-
plexity (2.88 vs. 3.03), but this difference is not statistically
significant (p = 0.7051, δ = -0.019), suggesting that structurally
simple code may still contain security flaws.

Among agentic frameworks, OH shows a similar trend,
with vulnerable files having lower complexity (3.63 vs. 4.51),
though the difference is not statistically significant (p = 0.074,
δ = -0.085). Further, HC shows a slight increase in the
complexity of vulnerable files (5.28 vs. 4.36). Notably, ACR
exhibits a significant increase in complexity of vulnerable files
(7.35 vs. 4.30). Our observations highlight that vulnerability
is not limited to structurally complex code as simple logic can
still be insecure. Yet, abnormally high complexity, as with the
patches of ACR, can serve as an indicator for security risk,
offering a practical signal for prioritizing code review.

Code-Level Factors
Across all systems, vulnerable patches typically modify
more files (Llama, OH) and file types (OH), and involve
more generated code (Llama, HC). Higher-risk patches in
ACR exhibit abnormally high code complexity.

2) Issue-Level Factors: We analyze the characteristics of
GitHub issues to determine whether specific issue features
correlate with the introduction of vulnerabilities.
Issue Type and Bug Type Classification: Among all the vul-
nerable instances generated by LLama and the agentic frame-
works, the vast majority of issues were labeled as Bug. For
LLama-generated vulnerable patches, 138 out of 185 (73.4%)
were classified as Bug, 40 (21.27%) as Feature, and 3 (1.59%)
as Question. In contrast, OH had 10 Bugs and 5 Feature; ACR
had 2 Bugs and 1 Feature; and HC had 2 Bugs.

Table V summarizes the distribution of bug types across
all vulnerable instances. The most frequent categories are
Program Anomaly and Configuration. Other bug types, such
as Performance, GUI-related, appear less frequently. Overall,
vulnerabilities of the standalone LLM and agentic frameworks
mostly involve addressing core logic or environment-related
issues, where deeper contextual understanding is critical.
Information Completeness: Among vulnerable LLM cases,
nearly all (136/138) bug-related issues included observed
behavior, but just about 65.9% (91/138) included steps to re-
produce, and only 49.2% (68/138) provided expected behavior.
These rates indicate that while problems are usually described,

Bug Type Llama OH ACR HC

Program Anomaly Issue 82 7 2 1
Configuration Issue 27 2 – –
Performance Issue 6 – – –
GUI-Related Issue 4 – – –
Test Code-Related Issue 3 1 – –
Permission/Deprecation Issue 2 – – –
Security Issue 2 – – 1
Network Issue 1 – – –
Miscellaneous/Other Issue 11 – – –

TABLE V
BUG TYPE DISTRIBUTION ACROSS VULNERABLE INSTANCES.

some important information, i.e., what the code is supposed to
do and how to reproduce the issue, is often missing. This lack
of information may increase ambiguity, forcing the model to
infer expected behavior without explicit instructions, thereby
raising the risk of inadequate implementations.

Examining the 18 unique GitHub issues for agentic work-
flows (15 for OH, 3 for ACR, 2 for HC), we observe a
high rate of information completeness for OH instances: all
10 vulnerable issue reports included observed behavior, 8
included expected behavior, and 9 provided steps to reproduce.
In ACR, both vulnerable instances (2/2) had all three types
of information. For HC, 2 out of 3 issues include observed
behavior, 1 provides expected behavior, and 2 offer repro-
duction steps. While sample sizes are limited, we observe
that framework-generated vulnerabilities can occur even when
issue descriptions are reasonably specified.
# Words: We observed minor differences in the length of issue
descriptions and associated comments in vulnerable vs. all
Llama-generated instances. On average, problem descriptions
contained 111.71 words for all issues and 112.55 words for
vulnerable instances. Neither the standalone word count of
problem descriptions (p = 0.753, Cliff’s δ = 0.013) nor the
combined word count including comments (p = 0.191, δ =
0.056) reached statistical significance. These results suggest
that the overall length of issue content alone is not a strong
differentiator in predicting whether the model will introduce
vulnerabilities, and possibly other factors, such as clarity or
specificity, can play a more important role than sheer verbosity.

Across the frameworks, we observed mixed patterns. OH
and ACR had higher average word counts when combining
issue and comment text (355.1 and 435.7 words, respectively),
while HC’s was much lower (96.0). This illustrates the unique
way each framework is impacted by the available information.
# Comments Prior to First PR: Llama-generated vulnerable
instances had slightly more comments on average (4.14)
compared to all issues (3.57), but the difference was not
significant (p = 0.22, δ = 0.053), indicating that comment count
does not possibly distinguish vulnerable from non-vulnerable
LLM-generated patches.

Among the frameworks, OH had significantly fewer com-
ments than the general set (p < 0.001, δ = -0.315), while
ACR and HC showed no statistically significant differences (p
= 0.6256 and p = 0.2324, respectively). While the number of
comments is not a strong predictor overall, certain frameworks
may be more sensitive to the availability, or absence, of prior



discussion when generating code.
Presence of Code Snippets: We observe that only 48.1% of
issues associated with vulnerable LLM outputs include code
snippets in the issue body, compared to 58.6% of all issues.
This difference is statistically significant (χ2 = 7.85, p =
0.0051), suggesting that the presence or absence of code
snippets is not evenly distributed between the two groups.
The chi-squared test evaluates whether there is a meaningful
association between two categorical variables, in this case,
code snippet presence and vulnerability occurrence. To as-
sess the strength of this association, we calculate the phi
coefficient (ϕ = 0.019), a standardized effect size for 2×2
contingency tables. While statistically significant, the effect
size is negligible, indicating a weak association. Nonetheless,
the direction of the effect suggests that LLMs are more prone
to generating vulnerabilities when issue descriptions lack code
snippets, possibly due to the absence of concrete examples,
stack traces, or code context, which increases ambiguity.

OH shows an even stronger pattern (χ2 = 32.29, p <
0.0001, ϕ = 0.039), suggesting that missing code context may
be particularly harmful for more autonomous systems. While
ACR had no vulnerable issues with code snippets (0 out of 3),
both HC issues contained code snippets (2 out of 2). Overall,
these trends indicate that the potential ambiguities in issues
lacking code snippets can increase the risk of vulnerabilities.

Issue-Level Factors
Insecure patches are associated with issues where code
snippets are absent, and when expected behavior or repro-
duction steps are missing. Most of these issues are labeled
as Bug and involve core logic or configuration problems.
OH is particularly sensitive to issues without code snippets.

3) Project-Level Factors: We also examined whether
broader project characteristics, such as codebase size, com-
plexity, and contributor count, are associated with the number
of vulnerabilities introduced by LLM or agent-generated code.
We used Spearman’s rank correlation coefficient (ρ) to assess
monotonic relationships between each project-level factor and
the number of detected vulnerabilities across instances.
# Files in Repository: We examined whether the size of the
codebase, as measured by the total number of Python files
in the repository, correlates with vulnerability outcomes. For
Llama-generated code, the correlation was weak and not
statistically significant (ρ = 0.188, p = 0.206). Similarly,
we found no meaningful correlations in any of the agentic
frameworks: OH (ρ = 0.171, p = 0.251), ACR (ρ = 0.205,
p = 0.168), and HC (ρ = 0.171, p = 0.251). These findings
suggest that codebase size is not a reliable indicator of LLM-
generated vulnerabilities.
Maintainability and Complexity: Similarly, we found no sta-
tistically significant correlation between vulnerability counts
and average maintainability index or the cyclomatic complex-
ity per function in the projects. Within the LLM-generated
code, maintainability (ρ = −0.082, p = 0.583) and complexity
(ρ = −0.064, p = 0.670) were not correlated with vulnerability
introduction. The same holds for the frameworks. For example,

in OH, maintainability (ρ = 0.098, p = 0.512) and complexity
(ρ = −0.007, p = 0.962) were not predictive of vulnerability
counts. ACR and HC showed similar patterns. These findings
indicate that the internal complexity or maintainability of a
project is not a strong predictor of insecure code generation
by LLM-based systems.
Contributor Count: We also examined whether the number of
contributors in a project correlates with the introduction of
vulnerabilities. For LLM-generated code, the association was
weak and statistically insignificant (ρ = 0.166, p = 0.2635).
The same held true across all agentic frameworks: OH (ρ =
0.161, p = 0.280), ACR (ρ = 0.158, p = 0.288), and HC
(ρ = 0.109, p = 0.467). These findings suggest that community
size, used here as a rough proxy for project activity, does not
significantly influence LLM vulnerability outcomes, although
the consistently positive (albeit weak) correlations hint at a
very slight directional trend.

Project-Level Factors

Project size, complexity, and contributor count showed
weak, non-significant correlations with vulnerability rates.
As a result, these factors alone do not reliably predict
insecure LLM-generated code.

RQ3: Summary of Findings. Our analysis of over 20,000
LLM-generated patches reveals that vulnerability-prone out-
puts are associated with a consistent set of characteristics,
particularly at the code and issue level. At the code level,
vulnerable patches tend to involve broader and more scattered
edits, modifying more files and generating more lines of code,
especially in more autonomous frameworks like OH. While
unique file types and sensitive file modifications showed some
variation, their predictive value remains limited across all
systems. Cyclomatic complexity was not a strong differentiator
of insecure code, except in ACR, where vulnerable patches had
significantly higher complexity.

At the issue level, vulnerabilities were frequently found in
tasks labeled as bugs, particularly those lacking full contextual
descriptions (e.g., missing expected behavior or reproduction
steps). However, for both the standalone LLM and frame-
works, higher word counts did not strongly distinguish vulner-
able from non-vulnerable cases. A key trend was that issues
lacking concrete code snippets were more frequently linked to
insecure patches, highlighting the importance of prompts with
specific code snippets for secure patch generation.

At the project level, no strong correlation was found be-
tween vulnerability introduction and repository size, complex-
ity, maintainability, or contributor count. These results suggest
that security risks are impacted more by how LLMs interact
with individual tasks and contextual cues than by the broader
structural properties and attributes of the repository.

Overall, vulnerabilities in LLM-generated patches are most
strongly associated with code-level factors like broader edits
and file changes, and issue-level factors such as missing con-
textual information, especially the absence of code snippets.
In contrast, project-level attributes show no clear relationship
with vulnerability outcomes.



IV. THREATS TO VALIDITY

Our security analysis relies on static analysis tools, which
are known to produce false positives and vary in coverage. To
mitigate this threat, we used three tools (Semgrep, Bandit,
and CodeQL) and applied a majority voting technique to
reduce false positives and increase confidence in the identified
vulnerabilities. This approach deliberately trades off recall for
precision; while we detect fewer vulnerabilities than we might
using a single tool or a union-based strategy, we gain higher
confidence that the findings represent true security issues.
Nevertheless, we acknowledge that some false positives or
missed vulnerabilities may remain.

Moreover, our evaluation focused on one high-performing
LLM and the top three publicly available agentic frameworks
at the time. While there are many other models and frame-
works in the space, our selection captures a broad and rep-
resentative sample of state-of-the-art systems. Further, while
our LLM-based approach generated responses for both the
train and test sets (a process that took well over a week), we
acknowledge the limitation of our agentic study in terms of
data scale and have adjusted our conclusions accordingly. For
example, AutoCodeRover reports a cost of $0.70 per instance
to achieve their test set results, meaning it would cost over
$13,000 to generate patches for the full 19,000 instances of
training set, which is beyond our available resources.

Lastly, manual annotations may be prone to human error.
To improve reliability, all annotations were independently
performed by two reviewers, whom ensured a strong inter-
rater agreement (Cohen’s Kappa > 0.9) through discussions.

V. RELATED WORK

Security of LLM-generated Code. Given the growing
adoption of LLMs by developers [60]–[62], recent studies have
begun to examine various aspects of LLM-generated code [23],
[35], [63], [64]. While many of these studies have focused on
functionality, others have examined the security implications
of LLM-generated code [13], [14], [17]–[19], [51]. Pearce et
al. [13] conducted one of the first assessments on the secu-
rity of LLM-generated code, showing that even state-of-the-
art models can produce vulnerable code in security-sensitive
scenarios. Since then, many studies have confirmed these
findings by analyzing LLM-generated code across different
tasks, models, and user interaction settings [9], [12], [65], [66].

Most prior work has focused on small code snippets or
controlled experimental settings [13], [17]–[19]. These settings
often lack the full project context and complexity inherent in
real-world software maintenance tasks, limiting their ability
to assess how vulnerabilities emerge in practice. However,
a recent study by Fu et al. [14] analyzed Copilot-generated
code snippets in GitHub projects and identified several security
weaknesses. It is worth mentioning that because these comple-
tions are reviewed and integrated by developers, the model is
not fully in control of the final output. Our work complements
and extends this work by analyzing LLM-generated code in
real-world GitHub issues, where models are given autonomy to
modify any relevant files. To our knowledge, this is the first

large-scale empirical study to link vulnerabilities introduced
by LLMs and agentic frameworks to a broad set of contextual
factors, including issue descriptions, code-level attributes, and
project structure, in realistic software development settings
where models are tasked with resolving issues.

Abnormal Commit Detection. Past studies have explored
various techniques to identify and characterize the risk of
potential changes in software systems, particularly focusing on
GitHub commits [46], [48], [49], [67]. This line of research
will generally aim to identify outlier commits, also known as
risky or abnormal commits, through assessing various commit
attributes. For instance, Gonzalez et al. introduced Anoma-
licious [49], an approach to identify malicious commits. By
analyzing the commits and identifying the characteristics of a
“normal” developer commit, they made an attempt at detecting
malicious code contributions.

While these studies provide valuable foundations for iden-
tifying risky, malicious, or insecure commits, they have been
developed to evaluate human-written code. Our work is the
first to assess the characteristics of insecure code produced
by LLMs and agentic frameworks. By comparing vulnerable
and non-vulnerable generated patches across a range of factors
(e.g., scope of modifications, issue type, information complete-
ness) we identify the unique characteristics of high-risk agentic
or LLM-generated commits.

VI. CONCLUSIONS

This study presents the first large-scale security evaluation
of LLM and agent-generated patches for real-world issue
resolution tasks. We find that standalone LLMs can introduce
up to 9× more new vulnerabilities than developers when
addressing issues. Notably, some of the most frequent vulner-
abilities introduced by LLMs (e.g., CWE-95, CWE-327) differ
significantly from those found in developer-written code (e.g.,
CWE-732, CWE-377), indicating that LLMs are not merely
mimicking human mistakes but also introducing distinct pat-
terns of failure. Further, our analysis of agentic frameworks
shows that increasing LLM autonomy can further amplify
vulnerability risks, especially in tasks that are underspecified
or require an understanding of the existing project context.

Importantly, our findings show that vulnerable outputs are
not random. Rather, they are associated with particular code
and issue-level characteristics, such as a higher number of
modified files, longer generated code, and the absence of code
snippets or certain information in the issue description. These
patterns suggest that the riskiness of LLM or agent-generated
patches can be assessed not only by detecting specific vulner-
able lines of code but also by developing complementary risk
assessment techniques that evaluate both the generated code
and the broader context in which a patch is proposed (e.g.,
issue type or information completeness). Such systems can
complement existing vulnerability detection techniques, often
reliant on costly manual reviews, by narrowing the focus to
potentially high-risk code contributions.
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